Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gerd Meyer,* Nazife Cesur and Ingo Pantenburg

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail:
gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Sc}-\mathrm{N})=0.008 \AA$
R factor $=0.040$
$w R$ factor $=0.096$
Data-to-parameter ratio $=37.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Diamminehexabromodiscandium(III)

The title compound, $\left[\mathrm{Sc}_{2} \mathrm{Br}_{6}\left(\mathrm{NH}_{3}\right)_{2}\right]$, was obtained by the reaction of ammonium bromide, $\left(\mathrm{NH}_{4}\right) \mathrm{Br}$, with scandium metal in a sealed tantalum metal container. The crystal structure contains zigzag chains of edge-connected [$\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{5}$] octahedra according to the formulation $\left[\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{1 / 1} \mathrm{Br}_{1 / 1} \mathrm{Br}_{4 / 2}\right] . \quad \mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3} \quad$ is isotypic with $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}$.

Comment

Non-noble metals may be oxidized by an H atom of the ammonium ion and incorporated in complexes such as ammonium salts or ammoniates (Meyer, 1994). The reaction of ammonium bromide, $\left(\mathrm{NH}_{4}\right) \mathrm{Br}$, with scandium yielded $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{5}\right]$ (Böhmer \& Meyer, 2001) with the erythrosiderite-type structure. A closer inspection of this reaction has now resulted in the isolation of single crystals of the mono- and diammoniates of scandium(III) bromide, $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3}$ and $\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{3}$. Both compounds crystallize isostructurally with the respective chlorides, $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}$ and $\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{3}$ (Meyer \& Klein, 2002). The crystal structure of the monoammoniate, $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3}$, is presented here.

In $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3}$, the Sc^{3+} cation is surrounded octahedrally by five bromide ions and one ammonia molecule. The $\mathrm{Sc}-\mathrm{N}$ distances [2.252 (7) and 2.244 (7) \AA] are very similar to the corresponding distances in $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}$. The $\mathrm{Sc}-\mathrm{Br}$ distances are between 2.532 (2) and 2.720 (2) \AA, with an average of 2.648 (2) A. Considering the difference between the ionic radii of Cl^{-}and Br^{-}of about $0.15 \AA$, this value compares very well with the mean $\mathrm{Sc}-\mathrm{Cl}$ distance in $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}$ of $2.499 \AA$.

Figure 1
One dimer of octahedra in the structure of $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3}$, showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Received 23 September 2003 Accepted 29 September 2003 Online 7 October 2003

Figure 2
A perspective view of the crystal structure of $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3}$ in a polyhedral representation, showing the zigzag chains of edge-connected dimers.

The $\left[\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{5}\right]$ octahedra in $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3}$ are connected via two common bromide edges, in accordance with the formulation $\left[\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{1 / 1} \mathrm{Br}_{1 / 1} \mathrm{Br}_{4 / 2}\right.$], to form a zigzag chain (Fig. 1). These chains are arranged as shown in Fig. 2 and they appear to be held together by van der Waals and hydrogen bonding.

Experimental

Ammonium bromide, $\left(\mathrm{NH}_{4}\right) \mathrm{Br}(5 \mathrm{mmol}, 490 \mathrm{mg})$, and scandium metal ($2 \mathrm{mmol}, 90 \mathrm{mg}$) were placed in a tantalum container, which was then sealed by helium arc welding and jacketed by a silica ampoule. The reaction mixture was heated to 623 K for 100 h . Colourless single crystals of $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3}$ were selected under a microscope in an argon-filled dry box.

Crystal data

$\left[\mathrm{Sc}_{2} \mathrm{Br}_{6}\left(\mathrm{NH}_{3}\right)_{2}\right]$
$M_{r}=603.45$
Triclinic, $P \overline{1}$
$a=7.392$ (2) \AA
$b=9.578(2) \AA$
$c=9.551(2) \AA$
$\alpha=73.07$ (2) ${ }^{\circ}$
$\beta=80.04(2)^{\circ}$
$\gamma=77.82(2)^{\circ}$
$V=627.8(3) \AA^{3}$

Data collection

Stoe IPDS II diffractometer ω and φ scans
Absorption correction: numerical; the absorption correction (X $R E D$; Stoe \& Cie, 2001) was performed after optimizing the crystal shape using X-SHAPE (Stoe \& Cie, 1999)
$T_{\text {min }}=0.052, T_{\text {max }}=0.155$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.096$
$S=0.79$
3470 reflections
93 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=3.192 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 3629 reflections
$\theta=1.3-29.8^{\circ}$
$\mu=20.12 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Column, colourless
$0.25 \times 0.10 \times 0.10 \mathrm{~mm}$

9270 measured reflections 3470 independent reflections 1750 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.072$
$\theta_{\text {max }}=29.6^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-13 \rightarrow 13$

[^0]Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Sc} 1-\mathrm{N} 1$	$2.252(7)$	$\mathrm{Br} 1-\mathrm{Sc} 2$	$2.6769(18)$
$\mathrm{Sc} 1-\mathrm{Br} 11$	$2.5316(18)$	$\mathrm{Br} 2-\mathrm{Sc} 2$	$2.6542(18)$
$\mathrm{Sc} 1-\mathrm{Br} 1$	$2.6548(18)$	$\mathrm{Sc} 2-\mathrm{N} 2$	$2.244(7)$
$\mathrm{Sc} 1-\mathrm{Br} 12$	$2.6555(19)$	$\mathrm{Sc} 2-\mathrm{Br} 22$	$2.5293(18)$
$\mathrm{Sc} 1-\mathrm{Br} 2$	$2.7197(17)$	$\mathrm{Sc} 2-\mathrm{Br} 21$	$2.6477(18)$
$\mathrm{Br} 12-\mathrm{Sc} 1^{\mathrm{i}}$	$2.6779(17)$	$\mathrm{Sc} 2-\mathrm{Br} 21^{\mathrm{ii}}$	$2.7190(18)$
$\mathrm{N} 1-\mathrm{Sc} 1-\mathrm{Br} 11$	$93.8(2)$	$\mathrm{Sc} 2-\mathrm{Br} 2-\mathrm{Sc} 1$	$94.33(6)$
$\mathrm{N} 1-\mathrm{Sc} 1-\mathrm{Br} 1$	$92.4(2)$	$\mathrm{N} 2-\mathrm{Sc} 2-\mathrm{Br} 22$	$92.8(2)$
$\mathrm{Br} 11-\mathrm{Sc} 1-\mathrm{Br} 1$	$91.10(6)$	$\mathrm{N} 2-\mathrm{Sc} 2-\mathrm{Br} 21$	$92.6(2)$
$\mathrm{N} 1-\mathrm{Sc} 1-\mathrm{Br} 12$	$87.8(2)$	$\mathrm{Br} 22-\mathrm{Sc} 2-\mathrm{Br} 21$	$92.49(6)$
$\mathrm{Br} 11-\mathrm{Sc} 1-\mathrm{Br} 12$	$94.50(6)$	$\mathrm{N} 2-\mathrm{Sc} 2-\mathrm{Br} 2$	$88.7(2)$
$\mathrm{Br} 1-\mathrm{Sc} 1-\mathrm{Br} 12$	$174.38(6)$	$\mathrm{Br} 22-\mathrm{Sc} 2-\mathrm{Br} 2$	$94.32(6)$
$\mathrm{N} 1-\mathrm{Sc} 1-\mathrm{Br} 12^{\mathrm{i}}$	$170.1(2)$	$\mathrm{Br} 21-\mathrm{Sc} 2-\mathrm{Br} 2$	$172.99(6)$
$\mathrm{Br} 11-\mathrm{Sc} 1-\mathrm{Br} 12^{\mathrm{i}}$	$94.49(6)$	$\mathrm{N} 2-\mathrm{Sc} 2-\mathrm{Br} 1$	$171.1(2)$
$\mathrm{Br} 1-\mathrm{Sc} 1-\mathrm{Br} 12^{\mathrm{i}}$	$92.78(6)$	$\mathrm{Br} 22-\mathrm{Sc} 2-\mathrm{Br} 1$	$94.51(6)$
$\mathrm{Br} 12-\mathrm{Sc} 1-\mathrm{Br} 12^{\mathrm{i}}$	$86.30(5)$	$\mathrm{Br} 21-\mathrm{Sc} 2-\mathrm{Br} 1$	$92.25(6)$
$\mathrm{N} 1-\mathrm{Sc} 1-\mathrm{Br} 2$	$84.9(2)$	$\mathrm{Br} 2-\mathrm{Sc} 2-\mathrm{Br} 1$	$85.59(5)$
$\mathrm{Br} 11-\mathrm{Sc} 1-\mathrm{Br} 2$	$175.57(7)$	$\mathrm{N} 2-\mathrm{Sc} 2-\mathrm{Br} 21^{\mathrm{ii}}$	$86.6(2)$
$\mathrm{Br} 1-\mathrm{Sc} 1-\mathrm{Br} 2$	$84.73(5)$	$\mathrm{Br} 22-\mathrm{Sc} 2-\mathrm{Br} 21^{\mathrm{ii}}$	$176.44(7)$
$\mathrm{Br} 12-\mathrm{Sc} 1-\mathrm{Br} 2$	$89.69(6)$	$\mathrm{Br} 21-\mathrm{Sc} 2-\mathrm{Br} 21^{\mathrm{ii}}$	$84.05(5)$
$\mathrm{Br} 12^{\mathrm{i}}-\mathrm{Sc} 1-\mathrm{Br} 2$	$87.21(5)$	$\mathrm{Br} 2-\mathrm{Sc} 2-\mathrm{Br} 21^{\mathrm{ii}}$	$89.16(6)$
$\mathrm{Sc} 1-\mathrm{Br} 12-\mathrm{Sc} 1^{\mathrm{i}}$	$93.70(5)$	$\mathrm{Br} 1-\mathrm{Sc} 2-\mathrm{Br} 21^{\mathrm{ii}}$	$86.49(5)$
$\mathrm{Sc} 1-\mathrm{Br} 1-\mathrm{Sc} 2$	$95.32(6)$	$\mathrm{Sc} 2-\mathrm{Br} 21-\mathrm{Sc} 22^{\mathrm{ii}}$	$95.95(5)$

Symmetry codes: (i) $-x, 2-y, 1-z$; (ii) $1-x, 1-y, 2-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Br} 11^{\mathrm{i}}$	0.89	2.64	$3.532(8)$	175
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{Br} 22^{\mathrm{ii}}$	0.89	2.64	$3.520(8)$	170
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Br} 22^{\text {iii }}$	0.89	2.68	$3.556(8)$	171
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots \mathrm{Br} 11^{\mathrm{iv}}$	0.89	2.66	$3.551(7)$	174

Symmetry codes: (iii) $-x, 2-y, 2-z$; (iv) $x, 1+y, z$; (v) $1-x, 1-y, 1-z$; (vi) $1+x, y-1, z$.

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{N}-\mathrm{H}$ distances of $0.890 \AA$. A common $U_{\text {iso }}(\mathrm{H})$ value was refined for all six H atoms. The highest peak is located $1.30 \AA$ from Br 21 and the deepest hole $0.85 \AA$ from Br2.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Böhmer, N. \& Meyer, G. (2001). Z. Kristallogr. Suppl. 18, 125.
Brandenburg, K. (1996). DIAMOND. Release 1.0.3. University of Bonn, Germany.
Meyer, G. (1994). Advances in the Synthesis and Reactivity of Solids, edited by T. E. Mullouk, Vol. 2, pp. 1-26. London: JAI Press.

Meyer, G. \& Klein, D. (2002). Z. Anorg. Allg. Chem. 628, 1447-1450.
Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.
Stoe \& Cie (1999). X-SHAPE. Version 1.06. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2001). X-RED. Version 1.22. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2002). X-AREA. MainMenu Version 1.16. Stoe \& Cie, Darmstadt, Germany.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.043 P)^{2}\right]$
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\text {max }}=0.001$
 $\Delta \rho_{\text {max }}=1.06 \mathrm{e}^{\AA^{-3}}$
 $\Delta \rho_{\text {min }}=-1.19 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 (Sheldrick, 1997)
 Extinction coefficient: 0.0021 (3)

