Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gerd Meyer,* Nazife Cesur and Ingo Pantenburg

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{Sc}-\text{N}) = 0.008 \text{ Å}$ R factor = 0.040 wR factor = 0.096 Data-to-parameter ratio = 37.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diamminehexabromodiscandium(III)

The title compound, $[Sc_2Br_6(NH_3)_2]$, was obtained by the reaction of ammonium bromide, $(NH_4)Br$, with scandium metal in a sealed tantalum metal container. The crystal structure contains zigzag chains of edge-connected $[Sc(NH_3)Br_5]$ octahedra according to the formulation $[Sc(NH_3)_{1/1}Br_{1/1}Br_{4/2}]$. $Sc(NH_3)Br_3$ is isotypic with $Sc(NH_3)Cl_3$.

Received 23 September 2003 Accepted 29 September 2003 Online 7 October 2003

Comment

Non-noble metals may be oxidized by an H atom of the ammonium ion and incorporated in complexes such as ammonium salts or ammoniates (Meyer, 1994). The reaction of ammonium bromide, $(NH_4)Br$, with scandium yielded $(NH_4)_2[Sc(NH_3)Br_5]$ (Böhmer & Meyer, 2001) with the erythrosiderite-type structure. A closer inspection of this reaction has now resulted in the isolation of single crystals of the mono- and diammoniates of scandium(III) bromide, $Sc(NH_3)Br_3$ and $Sc(NH_3)_2Br_3$. Both compounds crystallize isostructurally with the respective chlorides, $Sc(NH_3)Cl_3$ and $Sc(NH_3)_2Cl_3$ (Meyer & Klein, 2002). The crystal structure of the monoammoniate, $Sc(NH_3)Br_3$, is presented here.

In Sc(NH₃)Br₃, the Sc³⁺ cation is surrounded octahedrally by five bromide ions and one ammonia molecule. The Sc–N distances [2.252 (7) and 2.244 (7) Å] are very similar to the corresponding distances in Sc(NH₃)Cl₃. The Sc–Br distances are between 2.532 (2) and 2.720 (2) Å, with an average of 2.648 (2) Å. Considering the difference between the ionic radii of Cl⁻ and Br⁻ of about 0.15 Å, this value compares very well with the mean Sc–Cl distance in Sc(NH₃)Cl₃ of 2.499 Å.

Figure 1

One dimer of octahedra in the structure of $Sc(NH_3)Br_3$, showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

A perspective view of the crystal structure of Sc(NH₃)Br₃ in a polyhedral representation, showing the zigzag chains of edge-connected dimers.

The [Sc(NH₃)Br₅] octahedra in Sc(NH₃)Br₃ are connected via two common bromide edges, in accordance with the formulation $[Sc(NH_3)_{1/1}Br_{1/1}Br_{4/2}]$, to form a zigzag chain (Fig. 1). These chains are arranged as shown in Fig. 2 and they appear to be held together by van der Waals and hydrogen bonding.

Experimental

Ammonium bromide, (NH₄)Br (5 mmol, 490 mg), and scandium metal (2 mmol, 90 mg) were placed in a tantalum container, which was then sealed by helium arc welding and jacketed by a silica ampoule. The reaction mixture was heated to 623 K for 100 h. Colourless single crystals of Sc(NH₃)Br₃ were selected under a microscope in an argon-filled dry box.

Crystal data

$[Sc_2Br_6(NH_3)_2]$	Z = 2
$M_r = 603.45$	$D_x = 3.192 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.392 (2) Å	Cell parameters from 3
b = 9.578(2) Å	reflections
c = 9.551 (2) Å	$\theta = 1.3-29.8^{\circ}$
$\alpha = 73.07 (2)^{\circ}$	$\mu = 20.12 \text{ mm}^{-1}$
$\beta = 80.04 (2)^{\circ}$	T = 293 (2) K
$\gamma = 77.82 \ (2)^{\circ}$	Column, colourless
V = 627.8 (3) Å ³	0.25 × 0.10 × 0.10 mm
Data collection	

Stoe IPDS II diffractometer ω and φ scans Absorption correction: numerical: the absorption correction (X-*RED*: Stoe & Cie, 2001) was performed after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999) $T_{\min} = 0.052, \ T_{\max} = 0.155$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.096$ S = 0.793470 reflections 93 parameters H-atom parameters constrained 3629

9270 measured reflections 3470 independent reflections 1750 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.072$ $\theta_{\rm max} = 29.6^{\circ}$ $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -13 \rightarrow 13$

 $w = 1/[\sigma^2(F_o^2) + (0.043P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.06 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -1.19 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.0021 (3)

Table 1

Selected geometric parameters (Å, °).

Sc1-N1	2.252 (7)	Br1-Sc2	2.6769 (18)
Sc1-Br11	2.5316 (18)	Br2-Sc2	2.6542 (18)
Sc1-Br1	2.6548 (18)	Sc2-N2	2.244 (7)
Sc1-Br12	2.6555 (19)	Sc2-Br22	2.5293 (18)
Sc1-Br2	2.7197 (17)	Sc2-Br21	2.6477 (18)
Br12-Sc1 ⁱ	2.6779 (17)	Sc2-Br21 ⁱⁱ	2.7190 (18)
N1-Sc1-Br11	93.8 (2)	Sc2-Br2-Sc1	94.33 (6)
N1-Sc1-Br1	92.4 (2)	N2-Sc2-Br22	92.8 (2)
Br11-Sc1-Br1	91.10 (6)	N2-Sc2-Br21	92.6 (2)
N1-Sc1-Br12	87.8 (2)	Br22-Sc2-Br21	92.49 (6)
Br11-Sc1-Br12	94.50 (6)	N2-Sc2-Br2	88.7 (2)
Br1-Sc1-Br12	174.38 (6)	Br22-Sc2-Br2	94.32 (6)
N1-Sc1-Br12 ⁱ	170.1 (2)	Br21-Sc2-Br2	172.99 (6)
Br11-Sc1-Br12 ⁱ	94.49 (6)	N2-Sc2-Br1	171.1 (2)
Br1-Sc1-Br12 ⁱ	92.78 (6)	Br22-Sc2-Br1	94.51 (6)
Br12-Sc1-Br12 ⁱ	86.30 (5)	Br21-Sc2-Br1	92.25 (6)
N1-Sc1-Br2	84.9 (2)	Br2-Sc2-Br1	85.59 (5)
Br11-Sc1-Br2	175.57 (7)	N2-Sc2-Br21 ⁱⁱ	86.6 (2)
Br1-Sc1-Br2	84.73 (5)	Br22-Sc2-Br21 ⁱⁱ	176.44 (7)
Br12-Sc1-Br2	89.69 (6)	Br21-Sc2-Br21 ⁱⁱ	84.05 (5)
Br12 ⁱ -Sc1-Br2	87.21 (5)	Br2-Sc2-Br21 ⁱⁱ	89.16 (6)
Sc1-Br12-Sc1 ⁱ	93.70 (5)	Br1-Sc2-Br21 ⁱⁱ	86.49 (5)
Sc1-Br1-Sc2	95.32 (6)	Sc2-Br21-Sc2 ⁱⁱ	95.95 (5)

Symmetry codes: (i) -x, 2 - y, 1 - z; (ii) 1 - x, 1 - y, 2 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D = \Pi \cdots A$ $D = \Pi$ $\Pi \cdots A$ $D \cdots A$ $D = \Pi$	
$\begin{array}{ccccccc} N1-H1B\cdots Br11^{i} & 0.89 & 2.64 & 3.532 \ (8) & 175 \\ N1-H1C\cdots Br22^{ii} & 0.89 & 2.64 & 3.520 \ (8) & 170 \\ N2-H2B\cdots Br22^{iii} & 0.89 & 2.68 & 3.556 \ (8) & 171 \\ N2-H2C\cdots Br11^{iv} & 0.89 & 2.66 & 3.551 \ (7) & 174 \end{array}$	

Symmetry codes: (iii) -x, 2-y, 2-z; (iv) x, 1+y, z; (v) 1-x, 1-y, 1-z; (vi) 1 + x, y - 1, z.

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with N-H distances of 0.890 Å. A common $U_{iso}(H)$ value was refined for all six H atoms. The highest peak is located 1.30 Å from Br21 and the deepest hole 0.85 Å from Br2.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97.

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Böhmer, N. & Meyer, G. (2001). Z. Kristallogr. Suppl. 18, 125.

Brandenburg, K. (1996). DIAMOND. Release 1.0.3. University of Bonn, Germany.

- Meyer, G. (1994). Advances in the Synthesis and Reactivity of Solids, edited by T. E. Mullouk, Vol. 2, pp. 1-26. London: JAI Press.
- Meyer, G. & Klein, D. (2002). Z. Anorg. Allg. Chem. 628, 1447-1450.

Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.

Stoe & Cie (1999). X-SHAPE. Version 1.06. Stoe & Cie, Darmstadt, Germany. Stoe & Cie (2001). X-RED. Version 1.22. Stoe & Cie, Darmstadt, Germany. Stoe & Cie (2002). X-AREA. MainMenu Version 1.16. Stoe & Cie, Darmstadt, Germany.